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A study of natural  convection in an electrochemical system with a Rayleigh number  of  the order 10 l° is 
presented. Theoretical and experimental results for the unsteady behaviour of the concentration and 
velocity fields during electrolysis of  an aqueous solution of  a metal salt are given. The cell geometry is a 
vertical slot and the reaction kinetics is governed by a Butler-Volmer law. To reduce the effects of  
stratification, the flush mounted electrodes are located (symmetrically) in the middle parts of  the 
vertical walls. It is demonstrated,  both theoretically and experimentally, that a weak stratification 
develops after a short time, regardless of  cell geometry, even in the central part  of  the cell. This 
stratification has a strong effect on the velocity field, which rapidly attains boundary layer character. 
Measured profiles of concentration and vertical velocity at and above the cathode are in good agree- 
ment with numerical predictions. For  a constant cell voltage, numerical computations show that 
between the initial transient and the time when stronger stratification reaches the electrode area, 
the distribution of  electric current is approximately steady. 
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left hand side of equation system Sc 
right hand side of equation system t I 
concentration (tool m -3) t 
dimensionless concentration T 
concentration of species 'i' (mol m -3) ~' 
initial cell concentration (300 tool m -3) 
dimensionless initial cell concentration U 
concentration at electrode surface (tool m -3) V± 
increment solution vector in Newton's x' 
method x 
diffusion coefficient of species i (m 2 s -1) 
0.38 x 10 -9 m 2 s -1 2 

0.82 × 10 -9 m 2 s -1 y '  

effective diffusion coefficient of the electro- y 
lyte (0.52 × 10 -9 m 2 s -1) 
unit vector in the vertical direction z i 
unit vector in the horizontal direction 
Faraday's constant (96 487 A s mo1-1) 
acceleration of gravity (9.81 m s -2) 
dummy referring to positive (i = 1) or nega- 
tive (i = 2) ion 
current density (A m -2) 
dimensionless current density 
exchange current density (0.01 A m 2) 
Jacobian of system matrix 
length of electrode (0.03 m) 
transport flux density of ion i (molm -2 s -1) 
unit normal vector 
pressure (N m -2) 
dimensionless pressure 
gas constant molar (8.31 J K -1 mo1-1) 
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residual of equation system 
Rayleigh number g/3L3co/uD (2.54x 1010) 
Schmidt number v/D (1730) 
time (s) 
dimensionless time 
temperature (293 K) 
velocity vector (m s -1) 
dimensionless velocity vector 
characteristic velocity in the vertical direction 
potential of anode and cathode, respectively 
spatial coordinate in vertical direction (m) 
dimensionless spatial coordinate in vertical 
direction 
solution vector for c, q5 and 
spatial coordinate in horizontal direction (m) 
dimensionless spatial coordinate in horizon- 
tal direction 
charge number of ion i 

Greek symbols 

symmetry factor of the electrode kinetics, 0.5 
/5 volume expansion coefficient 

(1.24 × 10-4m3mol -I) 
r/S surface overpotential 
P constant in equation for the electric potential 

(-5.46) 
~ diffusion layer thickness 

scale of diffusion layer thickness 
constant relating Oc/Oy to the Butler-Vol- 
mer law (0.00733) 

v kinematic viscosity (0.9 x 10 -6 m 2 s -1) 
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Greek symbols 
p density (g m -3) 

' electric potential of electrolyte (V m ~) 

1. Introduction 

Natural convection appears frequently in electroche- 
mical systems such as cells for metal refining and 
lead acid batteries. In cases with vertically oriented 
electrodes, the strength of the convective motion is 
often measured in terms of the Rayleigh number 
(Ra). This nondimensional number is proportional 
to L 3, where L is the linear dimension of the elect- 
rodes*, and to the scale of the change of concentration 
due to the electrode reactions. At high Rayleigh num- 
bers, which appear also in small systems with moder- 
ate changes in concentration, the mass transfer is 
dominated by convection. The importance of convec- 
tive mass transfer is even more pronounced for large 
systems, for example, in metal refining or large bat- 
teries for load levelling. A good physical understand- 
ing of the motion of the liquid electrolyte is thus 
essential for improving the efficiency of operation of 
a variety of systems. 

In closed electrochemical systems, or in systems 
with a weak throughflow, natural convection is 
strongly influenced by stratification of the electrolyte. 
These effects are usually undesirable. For example, in 
electroplating, stratification is tantamount to an inho- 
mogeneous resistivity, which leads to a locally 
increased current density in regions of higher concen- 
tration. As a result, the thickness of the plated metal 
layer will be nonhomogeneous. By vigorous stirring 
or by a strong forced convective motion, effects of 
stratification may be removed. 

The paper by Wagner [1], in which effects of steady 
natural convection on the limiting current density on a 
copper cathode in a nonstratified aqueous solution of 
copper sulfate was investigated, was pioneering in 
making use of basic principles of fluid mechanics to 
quantify the importance of electrolyte motion in an 
electrochemical cell. The procedure used by Wagner 
[1], which relied on the momentum integral method 
for determining the natural convection, was further 
elaborated upon by Awakura el al. [2]. Comparisons 
with experiments were made by Awakura et al. [3], 
who, among other things, investigated how different 
initial concentrations affected the steady velocity dis- 
tribution on the cathode. Transient effects on short 
time scales, compared to the time scale for evolution 
of the system toward its steady state, have been stu- 
died theoretically and experimentally by Fukunaka 
and Kondo [4] and Fukunaka el al. [5]. In none of 
these studies were effects of stratification accounted 
for. So far, for large cells, such effects appear to 
have only been dealt with by using crude semiempiri- 

* In the present work, the bulk concentration of the electrolyte is 
chosen as the concentration scale. One may alternatively take the 
current density on the electrodes as a measure of the forcing of 
the motion. In that case, one obtains that Ra ~ L 4. 

g~ 

V'  
V 

dimensional electric potential of electrolyte 
(O/Ox', O/Oy') (m -1) 
(O/Ox, OlOy) 

cal methods. A summary of the state of the art has 
been given by Fukunaka and Kondo [6]. 

In contrast to the case of large cells, and cells of 
intermediate size as that considered in the present 
work, stratification in small cells has recently been 
investigated in some detail and is reasonably well 
understood. A recent review of the role of convective 
mass transport in small ceils has been given by Bark 
and Alavyoon [7]. One of the main differences 
between the behaviour of small cells and large ones 
is that, in the former case, very strong effects of stra~ 
tification are felt very quickly after a short initial tran- 
sient whereas in the latter case, a longer buildup time 
is needed before the motion is completely dominated 
by stratification, t However, as will be demonstrated 
in the present work, the time required for effects of 
stratification to be felt in a system of intermediate 
size is shorter than expected. The implications of 
this result for large cells will be investigated i~i future 
work. / 

Some comments on related work in the heat 
transfer literature are in order. Approximate 
analytical studies of steady natural convection of 
high Prandtl number fluids in enclosures have been 
carried out by Gill [8] and Kimura and Bejan [9]. In 
both these investigations the horizontal walls were 
insulated, but the thermal forcing at the vertical walls 
were different. In the paper by Gill [8], the vertical 
walls were assumed to be kept at fixed different tem- 
peratures whereas in the paper by Kimura and Bejan 
[9], constant fluxes of heat were prescribed. The exact 
solution given by Gill for the special case of linear 
stratification is in fact, when applied to the whole 
cell height, equal to that given by Kimura and Bejan. 
In Gill's approximate analytical solution for non- 
linear stratification, the interrelation between the stra- 
tification and the steady state horizontal motion in the 
interior is demonstrated. The solution also shows that 
for strong stratification, the dual structure of the 
boundary layer vanishes. For the case considered by 
Kimura and Bejan [9], on the other hand, the bound- 
ary layers are of constant thickness and the interior is 
completely stagnant. 

For certain classes of core stratifications and 
boundary conditions, similarity solutions for the 
steady boundary layer flow along a vertical wall can 
be found. Several solutions are given by Gebhart et 
al. [10]. A broader class of steady similarity solutions 
has been given by Semenov [11]. These solutions are 
investigated by Henkes and Hoogendoorn [12]. The 
backftow occurring in the outer part of the boundary 
layer in a stably stratified environment leads to loss of 
parabolicity for the mathematical problem, and 

t The most important difference between these cases is, as is well 
known, that the motion of the electrolyte in large cells is turbulent 
but laminar in small cells. ' 
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Henkes and Hoogendoorn conclude that for some 
forms of stratification, similarity solutions cannot be 
applied as boundary conditions for the complete 
numerical problem. A rough approximate procedure, 
called the 'modified local similarity method', has been 
proposed by Webb [13]. Similarity methods may, in 
certain cases, also be used for unsteady heat transfer 
problems in enclosures. A recent example is the 
work by Worster and Leitch [14]. 

The transient behaviour of vertical boundary layers 
in a nonstratified environment has been considered in 
detail by Carey [15, 16] by using a combination of sin- 
gular perturbation techniques for large values of the 
Prandtl number and numerical analysis. In these stu- 
dies, the boundary layer response to an instanta- 
neously increased wall temperature or wall heat flux 
was computed. The dual structure of the boundary 
layer was shown to prevail during the whole transient, 
and the presence of an overshoot for both tempera- 
ture and velocity before the steady state is reached 
was clearly demonstrated. The results given by Carey, 
although being informative for the case studied in the 
present work, do not account for the interaction 
between the two vertical boundary layers which exists 
in the present problem. This interaction, which was 
discussed in some detail by Gill [8], takes place via 
local entrainment into one of the boundary layers 
and detrainment out from the other. During the early 
stages of the electrolysis considered in the present 
paper, this kind of interaction between the vertical 
walls is of importance. 

A recent review of transient heat transfer in enclo- 
sures with prescribed temperature differences of the 
vertical walls has been given by Hyun [17]. The roles 
of three distinct processes occurring on different 
time scales during heat up of an enclosed fluid are 
emphasized: the establishment of boundary layers, 
convective redistribution of heat and finally diffusive 
smoothing. The time scales for these processes can 
be expressed in terms of the Brunt-Vfiisfilfi frequency 
and the Prandtl and Rayleigh numbers. An analysis 
along these lines is not attempted in the present 
work, which is a first step into an essentially unex- 
plored area. In a recent numerical study by Poujol et 

al. [18] of transient natural convection in an enclosure 
at high Prandtl and Rayleigh numbers, boundary con- 
ditions at the vertical walls that partially resemble 
those in the present work are investigated. The evolu- 
tion of the temperature field in the top and bottom 
regions of the enclosure shows qualitative agreement 
with that of the concentration field considered here. 

The present work reports on theoretical and experi- 
mental investigations of the system ICu(s)lCuSO 4 
(aq)lCu(s)] in a case with weak stratification. The 
considered value of R a  is large but, for simplicity, cho- 
sen such that laminar flow prevails. The results 
obtained are thus not directly applicable to the large 
cells used in industry for copper refining, in which 
the electrolyte is strongly turbulent. However, the 
parameter range investigated may be seen as an inter- 
mediate case between the above application and the 
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Fig. 1. Geometry of the cell. 

small cells studied in some detail, both theoretically 
and experimentally, by Karlsson et al. [19], Eklund 
et al. [20] and Bark et al. [21]. As it will be seen in 
the following Sections, several of the phenomena 
found, some of which were unexpected in the present 
intermediate case, will most likely appear also in a full 
scale cell for refining of copper but then interacting 
with a complicated turbulent flow. 

2. Formulation of numerical problem 

The geometry of the two-dimensional cell is shown in 
Fig. 1. The vertical walls are divided into three sec- 
tions, each of length L, where the middle sections con- 
sist of the flush mounted electrodes. The distance 
between the electrodes is also set equal to L. The 
analysis applies to a binary electrolyte, and when 
numerical values are assigned to physical constants, 
they correspond to a copper refining cell without sup- 
porting electrolyte. 

The electrochemical reactions at the electrodes are 

Me ~ Me zl + z l e -  anode 

Me ~1 +z l e -  ~ Me cathode (1) 

where z 1 is the charge number of the metal ion Me zl. 
The mass flux vector of species i in the electrolyte, 
where i = l, 2, is given by the Planck-Nernst law: 

~ t  i f D i  , , , , r , - ,  
-- c i z i V  ¢) - D i V  ci + ciu (2) 

R T  

Mass conservation of each species is ensured by the 
following equations 

Oc'i I - - I  

Ot--; = - V  • N i  (3) 

and the electric current density is quantified by Fara- 
day's law, 

i '  = F ( Z l N ]  + z2N~) (4) 

The electrolyte considered in the present work (i.e., 
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CuSO4(aq) ) can, as an accurate approximation, be 
considered as electrically neutral. In what follows, 
the ions Cu 2+ and SO ] .  are labelled species 1 and 2, 
respectively. Thus 

Z1C" 1 -[-Z2C i ~-- 0 ( 5 )  

which implies a nondivergent electric current, that is, 

V ' .  r = 0 (6) 

It is convenient to introduce a new variable for the 
concentration, c ~ = Z l c] = -z2c'2. If Equation 2 is put 
into Equation 3 and the result is multiplied by zi, the 
two equations (one for each 'i') can be combined to 
give 

0cl ~t V lc t  DVlZct  
Ot-- v + • = (7) 

where D = 2D1Dz/(D1 +D2). An equation f ~  the 
electric potential, ~ ' ,  is derived from Equations 2, 4 
and 6 as 

R F T F v ' . ( c ' V  ') + V  = (8) 12 c '  0 

where P = 2(D1 -}- D2)/(D1 - D2). 
For the electrochemical part of the problem (i.e., 

the determination of c t and ~ ' )  two boundary condi- 
tions are needed. The prescribed electric potentials of 
the electrodes are V~_ (anode) and V_ t_ (cathode). One 
boundary condition is provided by the Butler-Volmer 
law, which is taken to be of the form 

[ ' (x ' ) .~y  = i~ [exp ( a ~ T ~ S )  

C~wall(Xt) e x p Q - ( 1 - o z )  ~---frls)l (9) 

where ~/s is the surface overpotential and the constant 
i t is the exchange current density. The normal compo- 
nent of the current density, i~(x ') .Oy, is defined as 
positive when the current leaves the electrode and 
enters the electrolyte. Condition 9 is thus applicable 
to both electrodes. An additional boundary condition 
is obtained by the fact that only the positive cupric 
ions carry charge across the electrode surfaces, that is, 

ZlF 

N~.Oy = 0 (10) 

Boundary conditions 9 and 10 can, when combined 
with Equations 2 and 4, be formulated as boundary 
conditions for c' and ~ ,  which will later be presented 
in nondimensional form. At all insulated boundaries, 
the gradients of c' and ~5 ~ perpendicularly to the 
boundary are set to zero. 

The governing equations for the three remaining 
variables, i.e. the velocity field ft~= (u ' ,v ' )  and the 
pressure field p',  are the two-dimensional Navier-  
Stokes equations for incompressible flow and the con- 
tinuity equation: 

0ft' + ~,. V'ft '  = I V'p '  + uV'2ft ' - g~(c'  - c'o)~x, 
Ot r p 

( l l )  

V ' .  ft' = 0 (12) 

The Boussinesq approximation has been used in 
Equation 11. Boundary conditions for u r and v r are 
the no-slip conditions. Before the equations are writ- 
ten in nondimensional form, an estimate, U, of the 
velocity scale in the vertical direction has to be found. 
Taking the length scale in the vertical direction to be L 
and that in the horizontal direction to be 6, scale 
analysis of Equation 7 with O c ' / O / = O  gives 
U ~ DL/52 .  Comparing the different terms in the 
Navier-Stokes equation in the vertical direction, 
and assuming that inside the concentration boundary 
layers there is a balance between buoyancy and 
viscous forces, it is concluded that 5 ~ LRa-1/4,  which 
gives U ~ D R a l / 2 / L .  The Rayleigh number is 
defined as Ra = g/3c~oL3/Du. A more extensive scale 
analysis arriving at the same result is given by Bejan 
[221. 

The following nondimensional variables are now 
introduced: 

, , F ( V  + y x (v+, v_ = x = - { ,  , , 

C l ftl Ut I pl  
C = c~ ° 1, ~ = -~, t =  L ' P - pU 2' 

? L  { - -  _ _  
2D1Fc' o 

Substitution of the physical variables in terms of 
their nondimensional counterparts gives, with the 
expression for U deduced above, a system of nondi- 
mensional equations for c, q~, ft and p. 

OC 
O-t + ft" VC = Ra-1/2V2c 

r v .  [(1 + c ) W l  + V2c = o 

Oft 
+ ft. VEt = - V p  ÷ Sc(Ra-1 / zv2 f t  - COx) 

Ot 

V. ft = 0 (13) 

where the Schmidt number Sc = u /D.  
The nondimensional boundary conditions become 

OC 
-a- = +~[exp(a~s) - (1 + Cwall ) exp(-(1 - c@h)] 
oy 

O < x < l  

~ . V c = O  x < O o r l < x  

Oeb 1 Oc 
0 < x < l  

0y 2(1+c) 0y 
~ . V ~ = 0  x < 0 o r l < x  

a = 0 (14) 
• ! I where ~ = Llo/2D1Fco and the unit vector ~ is per- 

pendicular to the respective boundary. The following 
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parameter values were used in the calculations: 

Ra = 2.54 × 101° 

Sc = 1730 

I? = -5.46 

: 7.33 x 10 3 

The numerical values of the physical parameters are 
given in the list of notations. Wide ranges of values 
for certain parameters can be found in the electroche- 
mical literature (e.g., see [23-25]), and the values for 
the exchange current density, i~, and diffusivities, 
D1,2, have been chosen within these ranges. 

2.1. Numerical method 

The system of  equations for c, 4, u and v are discre- 
tized using a Crank-Nicolson finite volume method 
[26], and a pressure correction scheme [27] was applied 
to solve fo rp  using the continuity equation S. The first 
set of equations was solved implicitly at every timestep 
with Newton's method. In terms of  the left and right 
hand sides of the system of equations, a i and hi, 
respectively, each Newton iteration can be written: 

Ji jdxj  = - R  i (15) 

where Jij = Oai(xk) /Oxj ,  Ri = bi(2n) - a i ( x k )  • x k  is 
the solution from the previous iteration and 2 n is the 
solution from the previous timestep. The linearized 
equations were solved by the GMRES-algori thm 
[28] with incomplete LU-factorization and the Jacob- 
ian calculated analytically, and updated as 
2 k+l = 2 ~ + dx. The vector ~ is here the solution vec- 
tor for c, ¢~, u and v. When 

- ~ b  i - ai(~ k) 
i=1 a//(~-k) < 1 0 - 3  

where m is the number of unknowns, the pressure cor- 
rection scheme is applied using the 'conjugate gradient 
method'  [29]. After updating the pressure and velocity 
fields once more, the next timestep is taken with 
t n+I = t ~ + dt and b = b(.~+l). 

The discretizations were made on a nonuniform 
and staggered grid, and the discretized equations are 
second order accurate both in time and space. A 
mesh with 100 x 135 gridpoints has been used, where 
the smallest grid spacing in the horizontal direction 
was located at the vertical walls and equal to 
1.0 × 10 -3. This spacing was necessary to resolve the 
concentration boundary layers which were only about 
0.01 units thick. Tests were also run with a reduced 
number of gridpoints (67 × 50), and since the result 
was only marginally affected by this change it was 
concluded that the use of  the higher number of points 
well captured the physical behaviour of the flow. 
Because of the explicit nature of the pressure correc- 
tion scheme, the timestep was limited to about 10 -3 
to obtain accurate results. 

When using this method, one has to specify the mathematically 
artificial boundary condition n.  Vp = 0 on solid walls. 

2.2. Experimental methodology 

The length L in the experimental cell was 0.03 m, while 
the thickness (i.e., the distance between the nonelec- 
trode vertical side walls) was only 0.01 m to minimize 
errors in the concentration measurements. The elec- 
trodes were made of pure copper (SS 5010: > 99.9%) 
and covered the whole cell width, giving an active 
area of 3 × 10 -4 m 2 each. They were connected to a 
voltage source, which was set to the desired value. 
The electrolyte was an 0.3 molar aqueous solution 
of CuSO4, and the mean current density (46 A m  -2) 
gave average concentration changes across the bound- 
ary layers of around 20% of the bulk concentration, 
with a maximum value below 30%. The applied cur- 
rent was thus well below the limiting current. Before 
each experiment the electrode surfaces were polished 
with emery paper (grade 600) until no visible inhomo- 
geneities could be found, 

The velocity measurements were performed by 
laser Doppler velocimetry at Vattenfall Utveckling 
AB in Alvkarleby. A TSI fibre-optic system with a 
0.122 m focal distance transmitting lens fitted to the 
fibre probe was used. The laser beams had a wave- 
length of 488 mm which gave an ellipsoidal measuring 
volume with a diameter of 0.036 mm and a length of 
0.26mm. The output effect was about 10-2W, and 
one of the beams was frequency shifted in order to 
determine the sign of  the velocity. Silicon carbide par- 
ticles with a mean diameter and density of 1.5 #m and 
3200 kgm -3, respectively, were added to the electro- 
lyte for light-reflecting purposes. The velocity at 
each position was measured for 10s with a mean 
data rate of 30 Hz, and a TSI IFA750 signal processor 
analysed the Doppler bursts. Standard TS1 software 
(FIND) was used for the statistical evaluation. The 
probe was mounted on a table adjustable by micro- 
meter screws, and the time needed to move the probe 
from one position to the next was approximately 5 s, 
giving a total scanning time of a full velocity profile 
with 25 measuring points of  about 6 min. Because 
the steep density gradients close to the electrodes, 
deflected the laser light, it was necessary to use an 
angle between the beams and the electrode surface 
of approximately 5 ° in order to focus on the electrode 
surface [19]. Despite this angle, the extension of  the 
measuring volume made it difficult to accurately 
determine the position of the surface. 

The probe beam deflection method, described by 
Eriksson [30], was used to measure concentration 
gradients at the vertical walls. 

3. Results and conclusions 

Figures 2 to 5 show the development of the velocity 
and concentration fields as plotted streamlines and 
iso-concentration lines at different times. In Fig. 
2(a), showing the concentration field after twenty 
seconds, the gradients are limited to thin boundary 
layers which have begun to propagate in the vertical 
directions due to buoyancy forces. The thickness of  
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(a) (b) 
1 1 I I 

m 

i i I P 

Fig. 2. Compu ted  concentrat ion (a) and velocity (b) fields for 
t = 20 s. Ac ~ 0.01 and 2x~b = 2e -4 

these boundary layers is denoted as 6s. For small 
times 6 s ~ 6. For large times, ~5 s << 6. The velocity 
field shown in Fig. 2(b) increases steeply from the 
wall out to its maximum value at y ~ 6 s and decays 
more slowly outside 6 s where c ~ c 0. Comparing this 
situation with that of natural convection in a nonstra- 

(a) (6) 

L l 

Fig. 3. Compu ted  concentrat ion (a) and velocity (b) fields for 
t = 2min .  Ac = 0.01 and A~b = 2e -3. 

(a) (b) 

F 

Fig. 4. Computed  concentrat ion (a) and velocity (b) fields for 
t = 12min. 2~c --- 0.01 and Lx~b = e 

tiffed semiinfinite fluid at the same Rayleigh and 
Schmidt numbers, it is found that the viscous layer 
at the trailing edges in the latter case has spread to a 
thickness of the same order as the cell width. This is 
in agreement with the velocity field in Fig. 2(b), and 
demonstrates that stratification does not yet influence 
the flow field between the electrodes. However, Fig. 
2(b) also shows that the vertical walls considerably 
affect the horizontal motion in the cell, where strongly 
entraining and detraining boundary layers create a 
central vortex which redistributes variations in con- 
centration between the boundary layers and the core 
region, thus initiating the early development of 
stratification between the electrodes. This is described 
by Gill [8] as a competition for fluid between the 
boundary layers. 

Figures 3(a) and (b) show the situation after 2rain 
when the concentration boundary layers have just 
reached the top and bottom of the cell. Large pressure 
gradients have developed in these areas to retard the 
flow, and the streamlines show that the flow goes 
through a sharp change of direction at the cell corners. 
This development continues in Figs 4 and 5, which 
show the stratification moving into the interior from 
the horizontal boundaries. Realizing now that the 
development in the upper half is qualitatively the 
same as that in the lower half, only with different signs 
for the concentration and velocities, we choose to 
study only the latter in the following. When stratifica- 
tion begins to develop at the bottom of the cell, fluid 
elements around y --- 6 s are dragged down into the 
stratified area by heavier fluid closer to the wall. Since 
this course of events is faster than the diffusion 
process that eventually evens out concentration 
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(a) (b) 
'------~ ~ I . ~ - -  

"-~ . 

Fig. 5. Computed concentration (a) and velocity (b) fields for 
t = 30min Ac = 0.01 and A~ = e - 3 .  

differences, buoyancy effects will make the lighter 
fluid reverse its path and turn upward. On their way 
up to the vertical position where the average concen- 
tration equals their own, the fluid elements gain 
momentum, and at this point the buoyancy force 
changes direction again. The result is local spacial 
undulations of  the iso-concentration lines, which can 
be clearly seen close to the lower right corner in Figs 
4(a) and 5(a). 

In Fig. 4, the flow has begun to attain boundary 
layer character caused by the relatively weak stratifi- 
cation which is shown by the dashed curve in Fig. 6. 
The effect of stratification on the velocity field can 
be investigated using similarity solutions [12] or the 

exact solution by Gill [8], page 525, which both 
show that the boundary layer thickness for linear stra- 
tification is proportional to the stratification raised to 
the power 1/4. If  the local stratification and the value 
of (C~waH - c0)1 at x = -0 .5  and t ~ = 12min are taken 
from the numerical simulation, the solution by Gill, 
(5 s = ( 4 u D / / 3 g S ) 1 / 4  where S is the stratification, gives 
a velocity boundary layer thickness that is only 

30% of that shown in Fig. 3. The discrepancy is 
explained by the decreasing stratification upstream 
of x = -0 .5  in Fig. 6, which gives thicker boundary 
layers which are convected downwards. The reason 
why Gill's exact solution is considered relevant despite 
its application to detraining flow, is the weakness of 
the stratification which causes only a weak horizontal 
motion. For  stronger nonlinear stratification, Gill's 
solution gives increasingly inaccurate approXimations 
of the actual flow field. Applied to the present case, 
however, it verifies that even a very weak stratification 
has a strong effect on the velocity field. In the study by 
Poujol e t  al. [18], a flow situation similar to the present 
one is computed, and the decreasing boundary layer 
thickness is explained by those authors to be caused 
by interaction with flow reflected by the opposite 
wall. Due to the very weak interaction between the 
boundary layers in the present case, and the conclu- 
sions drawn here about the strong influence of strati- 
fication, the explanation by Poujol e t  al. [18] seems 
somewhat questionable. 

The increased stratification in Fig. 5(a) has reduced 
the boundary layer thickness further compared to the 
previous Figures, and in the lower parts of the cell the 
boundary layer thickness is found to be approxi- 
mately constant. This is also in accordance with the 
previously mentioned power law function derived by 
Gill [8], which for stronger stratification gives a rela- 
tively weak relationship between the local stratifica- 
tion and the boundary layer thickness. Even though 
this function is only valid for linear stratification 
where the flow is neither detraining nor entraining, 
the approximately constant vertical boundary layer 
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Fig. 6. Stratification along the vertical centerline of 
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thickness in combination with the non-linear stratifica- 
tion in Fig. 5 indicates that a function similar to the 
power law function above exists also in the present case. 

The development of the current density on the elec- 
trodes is found to take place in two different stages. 
The first stage coincides with the development of the 
diffusion layers when the current is first turned on. 
Since the current density is dependent on the supply 
of cupric ions in the electrolyte at the cathode, the 
initially undisturbed concentration in this area allows 
a large current density. After about 30 s, the concen- 
tration boundary layers are fully developed and the 
current stabilizes on a level approximately 5% below 
its initial peak value. The concentration variations 
across the boundary layers on anode and cathode 
are then around 20% of the bulk concentration. 

Stage two is identified by stable current densities 
and lasts up to one hour. At this time, stratification 
in the bulk begins to affect the electrodes. After 
30 rain the stratification between the electrodes is still 
very weak, as shown in Fig. 6. The electric potential in 
the central region is therefore approximately given by 
the solution to Laplace's equation according to Equa- 
tion 13, and the current density is easily derived from 
Equations 2 and 4. Because of the small thickness of 
the concentration boundary layers along the elect- 
rodes and the relatively small concentration changes 
across them, the current density at the electrode sur- 
faces is approximately equal to the current distribu- 
tion just outside the boundary layers. Wagner [31] 
has formulated boundary conditions for this problem, 
and solved it for the extreme cases of either a very 
small or a very large distance between the electrodes. 
For small values of the applied voltage, Wallgren et al. 
[32] have found a solution applicable to the present 
problem. 

Figure 7 shows the current lines after 30 rain. They 
pass partly outside the electrode area which indicates 
that the effect from variations in bulk resistance will 
arrive earlier than changes in the concentration 
over-potential. The current density on the electrodes 
after 30 min is shown in Fig. 8. The U-shaped form 
is characteristic for the geometry of the present cell 
with finite electrodes embedded in plane walls on 
opposite side. The regions of increased current density 
at the edges will become smaller as the distance 
between the electrodes decreases. 

3.1. Comparison between theory and experiments 

Although the numerical simulations were two-dimen- 
sional, it was found that viscous effects from the 
insulated side walls parallel to the x-y-plane consid- 
erably influenced the tt~w field in the experimental 
cell during the early stages of the electrolysis. Viscous 
diffusion from these walls damped the velocity field 
created at the electrodes, thus preventing the central 
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vortex found in the fully two dimensional computa- 
tions to appear  in the experiments. As the stratifica- 
tion increased and began to dominate the flow field, 
the agreement between theory and experiments 
improved. When the thickness of  the velocity bound- 
ary layers had decreased to only a few diffusion layer 
thicknesses, three-dimensional effects in the experi- 
mental cell were no longer important.  Since the 
main mechanism for concentration redistribution in 
the cell is the convective transport  in the diffusion 
boundary layers, and three-dimensional viscous 
effects in the experimental cell do not significantly 
influence the velocity field inside these layers, it is 
believed that the evolution of the concentration field 
is largely equivalent to that calculated numerically. 

Figure 9 shows velocity profiles after 15 and 30 min. 
The overall agreement between experimental mea- 
surements and the numerical computations is good, 
indicating that the argumentation above about  the 
vanishing influence of the nonelectrode side walls is 
correct. Only a modest  disagreement is found for the 
peak value of the velocity, where the experimentally 

Fig. 9. Comparison between numericaliy simulated 
and measured velocity profiles at x =-0.5 and 

, t = 15 and t = 30rain. Key: ( ) Numerical solu- 
0.2 0,25 tions; (0 0) experimental data for t=  30rain; 

( * - - * )  experimental data for t = 15 min. 

measured values are about  10% higher than those 
computed. 

The agreement between numerical results and 
experimental concentration measurements is also 
good. The concentration gradient  at the surface is 
equal to the dimensionless current density, and Fig. 
10 shows three horizontal concentration profiles at 
the cathode after 30 min. The increased current den- 
sity close to the edges of  the cathode, which can be 
seen in Fig. 8, corresponds in Fig. 10 to the increased 
concentration gradients at the cathode boundary for 
x = 0.1 and x = 0.9. Below the cathode, the experi- 
mentally measured concentration gradients were 
somewhat larger than those computed. 

3.2. Exploratory measurements  on a larger cell 

Both velocity and concentration measurements were 
also carried out on a cell where the central part  includ- 
ing the electrodes were identical to that in Fig. 1, but 
where the regions above and below the electrodes were 
prolonged. This design was made in order to avoid 
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Fig. 10. Comparison between numerically simu- 
lated (solid lines) and measured (symbols) concen- 
tration profiles at the cathode after t = 30 min. 
x = 0.1, 0.5 and 0.9. 
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stratification between the electrodes for a longer time 
period, during which it was expected to find a time- 
independent velocity field. The height of the extended 
regions was approximately ten electrode lengths each. 

The concentration measurements showed that 
despite the modified geometry, a very weak stratifica- 
tion also started to develop early in this cell. The 
existence of a stratification was verified by the velocity 
measurements which registered a decreasing 
boundary layer thickness, although this decrease was 
slower than for the smaller cell. A quasisteady velocity 
field in the electrode area for intermediate times was 
therefore not found, which is a somewhat unexpected 
result of the present study, whose explanation is left 
for future work. 
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